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The paper analyses the main dimensional and structural shifts that appear in fiber-reinforced composites. Long, aligned 
fibers are considered to be made up of upright circular cylinders in a regular network. In fact, this arrangement is purely 
theoretical and impossible to achieve in practice. Dimensional and structural inconsistencies can appear due to the fact that 
fibers cannot be placed at equal distances, cannot be parallel and layers cannot be placed at equal distances. The paper 
presents the determination of shifts from theoretical formulae in the structure of composites. 
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1. Introduction 
 
During manufacture and afterwards, in the use of 

composites, a series of imperfections can appear, as well 
as chemical and diffusion phenomena that will lead to the 
existence of a significant difference between the 
composite and its theoretical model. In this case it can be 
seen, e.g. that the models of hexagonal or rectangular 
networks are far from the actual reinforced composites 
with hexagonal fibers. 

The following differences can be noted between 
theoretical models and real materials: 

 Differences between the theoretical size of 
mechanical features of the matrix and 
reinforcement material and their real values. Due 
to manufacturing processes, these values in the 
technical notes can shift from nominal values, 
which can be influenced by the manufacturer as 
well. It is necessary to make an analysis in order 
to establish whether these possible shifts can 
significantly influence the results obtained with 
calculations in formulae; 

 Differences between the theoretical geometric 
shape of the reinforcement materials and the 
geometric shape of the materials used. The 
precise shapes cannot be obtained in fabrication. 
For instance, it is difficult to obtain cylinder 
fibers, due to the shift from circular shape in the 
manufacturing procedure. It is also difficult to 
obtain spherical reinforcement materials, as their 
deviation is smaller or larger than the theoretical 
shape. Studies are needed to determine the extent 
to which the deviation can influence the 
calculations, considering the theoretical 
geometric shape; 

 Dimensional differences of the reinforcement 
materials. These differences will naturally appear 
in the fabrication process and it is compulsory to 
know the extent to which dimensional deviations 
can influence the behavior of the composite 
material; 

 Differences in the geometric layout of the 
reinforcement materials. In the studied models, 
the fibers are considered to be in perfectly 
hexagonal model or rectangular model, which in 
many cases is far from being true.  In this case, 
studies must be made to determine how a 
particular layout with high dispersion, as 
compared to the theoretical model, will influence 
the behavior of the composite material. 

All these shifts will alter the results obtained on 
theoretical models (presented, e.g. in [1] and it is 
necessary to make an analysis to determine which of the 
formulae used by various authors are the most adequate to 
analyze a certain type of composite.  

 
 
2. The influence of dimensional and structural  
     deviations on the value of elastic  
     constants  
 
Dimensional and structural differences of fiber 

composites can lead to mechanical properties that are 
different in the real material as compared to the theoretical 
considerations in ideal conditions of manufacture and use. 
In [2] an analysis was made of the factors that cause 
deviations from the theoretical aspects and it was noted 
that in certain cases these differences could be very big. 
Measurements to confirm this have been carried out in [4-
7]. Fig.1 and fig.2 present, after [3], the distribution of 
diameters in two types of SMC composites. A normal 
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distribution of diameters is seen. In this case, dispersion 
becomes important for the considered distribution. In the 
following, an analysis will be made of the influence of 
dimensional variations on the values of certain mechanical 
constants. Let us note dispersion σ and mean diameter of 
the fiber d, for a hexagonal network: 

S
dv f 4

2π
=  

where vf is the fibers volume fraction and S represents the 
section of the hexagonal cell [2]. 
 

 
Fig. 1. Distribution of fibers for a SMC, charge 164 

 

 
Fig. 2. Distribution of fibers for a SMC, charge 150 

 
In this case, if the diameter of the fiber varies 

with d∆± , the fiber percentage varies within the limits: 
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Size ( )2d∆  is considered very small and thus could be 
neglected and it was noted:  
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It follows from here that for a 10 % variation in the fiber 
diameter, a variation of 20 % in the procentual volume is 
obtained. Let us analyze the influence of this variation on 
the behavior of the composite. 

Let us consider the formulae that give the volume 
module, longitudinal elasticity module and the Poisson 
coefficient: 
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Consider the relative variation of diameter ε  that 

result in the relations: 
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where, further, the exponent is noted – the lower limit of 
the measurement considered and + the upper margin. For 
the longitudinal elasticity module and the Poisson 
coefficient, the following relations are obtained: 
 



280                                                                       A. Modrea, S. Vlase, M. R. Calin, A. Peterlicean 

 

)1)21(ˆ1)21(ˆ
(

))](21(ˆ1)[21(ˆ4

)]21(ˆ1[)21(ˆ
2

mf

f

m

f

mfff

mfff

mk
v

k
v

vv

EvEvE

+
±−

+
±

−±−±

+±−+±=−

εε
ννεε

εε

 

)1)21(ˆ1)21(ˆ
(

))](21(ˆ1)[21(ˆ4

)]21(ˆ1[)21(ˆ
2

ff

f

m

f

mfff

mfff

mk
v

k
v

vv

EvEvE

+
±−

+
±

−±−±

+±−+±=+

εε
ννεε

εε

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

±−
+

±

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±−±−

+±−+±=−

mf

f

m

f

fm
ffmf

mfff

mk
v

k
v

kk
vv

vv

1)21(ˆ1)21(ˆ

11)]21(ˆ1)[21(ˆ)(

)]21(ˆ1[)21(ˆˆ

εε

εενν

νενεν

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

±−
+

±

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±−±−

+±−+±=+

ff

f

m

f

fm
ffmf

mfff

mk
v

k
v

kk
vv

vv

1)21(ˆ1)21(ˆ

11)]21(ˆ1)[21(ˆ)(

)]21(ˆ1[)21(ˆˆ

εε

εενν

νενεν

 

 
3. Examples 
 
In the following, a numerical analysis is made. This is 

needed because the analytical representation of function 
charts for the main mechanical properties and deviations is 
very difficult to draw up, due to the form of the relations 
used. A numerical analysis is handier, especially thanks to 
the performance of existing calculation methods. 

Calculations will be made for three situations. In the 
first case (case study no.1) a composite made up of a 
matrix of longitudinal module with elasticity 0.4 MPa and 
Poisson coefficient 0.35 is considered. The fiber’s 
longitudinal elasticity module is 10.5 MPa and Poisson 
coefficient is 0.22. Graphic representation of the volume 
module margin is made considering the rapport between 
the radius of the fiber and the radius of the composite 
cylinder, then considering the procentual fiber volume to 
the total volume of the material. 

In the second case (case study no 2) we consider the 
composite made of epoxy resin with longitudinal elasticity 
module equal to  2.7 MPa and Poisson coefficient equal to 
0.35 while the fiber has longitudinal elasticity module of  
72.4 and Poisson coefficient 0.22. 

In the third case (case study no. 3), the same values 
for the fiber as in the previous example were taken and the 
matrix was considered to have a longitudinal elasticity 
module ten times smaller, having the same Poisson 
coefficient. 

 
 
 
 

Let us start by considering the variations of 
mechanical properties in the two phases. The formulae 
used were presented previously. Let us consider the 
variation of the elasticity module of the fiber, because in 
reinforced materials with long fibers they decisively 
influence the behavior of the composite. Fig. 3 shows 
Poisson coefficient for case study no. 1, considering that 
the fiber’s elasticity module varies by ± 10%. In this case a 
variation seen in this parameter and influences Poisson’s 
coefficient, which abides by the law of mixtures and is not 
influenced by the variation of the other elastic parameters. 
Fig. 4 shows the same parameter in case study no. 2. 
 
 

 
 

Fig. 3. Poisson coefficient for ±10% variations in the 
elasticity module for case study no. 1 

 
 
 

 
 

Fig. 4. Poisson coefficient for ±10% variations in the 
elasticity module for case study no. 2 

 
 

For case studies no. 2 and 3, it is noted there is no 
difference regarding the variation of Poisson coefficient 
even if the longitudinal elasticity module varies greatly. 
This is not the case with the other properties of the 
material. 
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Fig. 5. Upper and lower margins for the volume module 

for ± 10% variations of the elasticity module in case 
study no. 1 

 
 

Studying the variation of the volume coefficient 
depending on the concentration of the phases and 
considering that the properties of the fiber material can 
vary within a range of ± 10%, it is noted that the values 
obtained are situated pretty close to exact values. Thus, in 
this case, only for high procentual values of the fiber 
deviations start to appear from exact theoretical values. 
For small fiber concentrations, even a great deviation in 
the transversal elasticity module will lead to slight 
deviations from theoretical values in the margins of the 
volume module (fig.5). 

 

 
 

Fig. 6. Upper and lower margins for the volume module 
for ± 1% variations in the elasticity module in case study 

no.1 
 

If we consider for the same case to have a deviation of 
only ± 1% it is noted that values obtained for this case for 
the volume modules coincide (fig.6). It follows that for 
small variations around the mean values of the fiber’s 
mechanical properties the results obtained with this 
formula and the calculation presented in [2] differs 
insignificantly. Disregard of geometry, shape or material 
in these cases in the vicinity of theoretical values will 
influence the final result to a very small extent. The 
formulae under conditions in [2] prove to be very stable. 
 

 
 

Fig. 7. Upper and lower margins for the longitudinal 
elasticity module for ± 10% variations of the fiber’s 

elasticity module in case study no. 1 
 
 
In the case of the longitudinal elasticity module, the 

law of mixtures being respected, a variation in the 
longitudinal elasticity module of the fiber generally higher 
than the matrix’ will lead to a variation that is almost 
identical to the longitudinal elasticity module for the 
composite (fig.7). The fiber module is dominant and 
determines the result, thus its variation will trigger a nearly 
similar variation in the module of the composite. Fig. 7 
presents the longitudinal elasticity module of the 
composite in case study no. 1 and fig. 8. shows the same 
measurement for case study no. 2. If the two figures are 
analyzed, it is seen that the variation of the fiber module is 
approximately the same as the variation of the composite 
module as compared to the theoretical value. It follows 
then that for determination in calculations of this 
measurement we have to be careful of the values we work 
with and their deviations from theoretical values, as we 
can induce meaningful errors. Due to dimensional 
variations, the formulae used can lead to erroneous 
estimates of the longitudinal elasticity module. 
 

 
 

Fig. 8. Upper and lower margins for the longitudinal 
elasticity module for ± 1% variation of the fiber’s 

elasticity module in case study no.1 
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Considering concentration variations of the two 

phases as compared to theoretical values, the chart in fig. 9 
is obtained for the volume module, which indicates a high 
dispersion of the results. It follows then that for an 
accurate determination by calculus of the mechanical 
measurements the concentration of phases must generally 
be well estimated, as it intervenes in linear form in the 
majority of proposed formulae. Thus, deviations from 
theoretical values are directly proportional to the 
deviations in the theoretical values of the phase 
concentration. If the variation in the theoretical values is 
only 1% then the graph in fig. 10 is obtained, but even in 
this case, the differences are notable. 
 

 
 

Fig. 9. Upper and lower margins for the volume module 
for ± 10% variation in the fiber concentration in case 

study no.1 
 

 
Fig. 10. Upper and lower margins for the volume module 

± 1% variation  in  the  fiber  concentration in case 
 Study no.1 

 
 

Analyzing the formulae proposed for the transversal 
elasticity module, it is seen that the upper margin is 
sensitive to variations of the longitudinal elasticity module 
while the lower margin is less sensitive. 

 
 

 
 

Fig. 11. Upper and lower margins of the transversal 
elasticity module for ± 10% variation  of the longitudinal  
               elasticity module in case study no.1 

 
 

Fig. 11 shows the transversal elasticity module 
considering a variation of ± 10% of the longitudinal 
elasticity module and fig. 12 considers a ± 1% variation. If 
the variation is smaller, deviations from exact values are 
also very small. 

 

 
 

Fig. 12. Upper and lower margins of the transversal 
elasticity  module  for  ± 1% variation of the longitudinal  

elasticity module in case study no.1 
 
 
4. Discussion and conclusions 
 
Following analysis for the formulae presented in [2] 

for the determination of mechanical properties of 
composite materials it can be concluded that variations in 
the properties of the fiber or the matrix can generally lead 
to variations, sometimes significant ones, in the properties 
of the composite material. 
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A conclusion based on the formulae used and the 
charts is that longitudinal properties that are generally 
described in formulae abiding by the law of mixtures are 
influenced to the same extent with the deviations from the 
theoretical values. The longitudinal elasticity module and 
the volume module are especially considered. The Poisson 
coefficient is affected to a small extent by the 
discrepancies between the theoretical and experimental 
values. 

The dimensions that describe transversal features are 
significantly affected by deviations from theoretical 
values. This happens because the proposed formulae are 
based on less perfect models when calculating the 
dimensions corresponding to transversal deformations. 

As a general conclusion, we must bear in mind the 
deviations from the ideal, theoretical model and the real, 
fabricated model, produced at the end of a specific 
technological model, when calculating mechanical 
dimensions of a composite. Dimensional deviations can 
lead to values that can influence – sometimes decisively – 
the behavior of the considered material. 
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